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Abstract 

Conjectured solutions of the packing problem are 
found by using 'exact' equations to refine approxima- 
tions generated by the repulsion-energy method. 
Initial positions are selected randomly, and no sym- 
metry constraints are imposed. Improved and new 
results are presented for many cases in the range of 
15-90 circles. Several properties of the resulting struc- 
tures are discussed with emphasis on symmetry and 
other characteristics useful for identification and 
comparison. A preliminary set of rules for producing 
a standard orientation of such structures is presented. 

1. Introduction 

The problem treated here is that of locating n equal 
nonoverlapping circles on a sphere so that the size 
of the circles is maximized. It is equivalent to the 
problem of maximizing the minimum distance 
between n points on a sphere (Tammes, 1930; Fejes 
T6th, 1964). It has been of interest in geometry, 
chemistry, biology, engineering and optimization 
(Coxeter, 1962; Melnyk, Knop & Smith, 1977; Clare 
& Kepert, 1986; Tarnai & G~isp~ir, 1987; Saaty & 
Alexander, 1975). Only for n - 1 2  and n =24 have 
rigorous proofs of solutions so far been obtained. For 
other values of n, various approaches and principles, 
mostly based on some type of assumed symmetry, 
have been used to construct dense packings, the best 
of which are taken to be conjectured solutions. 

In the present work the principle of minimization 
of repulsion energy is used. Leech (1957) observed 
that the problem of maximizing the minimum distance 
between points is equivalent to that of a limiting case 
of minimizing the total potential energy of repulsion 
among points that interact in pairs with the energy 
varying as an inverse power p of the distance. As 
p ~ oo, the terms involving the shortest distance domi- 
nate, so that minimizing the energy gives a maximum 
of the shortest distance. Melnyk, Knop & Smith 
(1977) obtained approximate conjectured solutions 
by employing inverse powers in the range 400-1000. 
Clare & Kepert (1986) made a substantial advance 
by first using inverse powers in the range 5000-20 000 
to obtain approximate solutions and then refining 
these to exact conjectured solutions by solving the 
relevant set of equations for a common dimension. 
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It is sometimes advantageous to consider the nearer 
pole of each equal circle as a vertex of an inscribed 
polyhedron. Then the diameter of the circles is equal 
to the length of the shortest edges. The number N of 
contacts between circles is equal to the number of 
shortest edges. These vertices are the points that repel 
each other in the energy model. 

2. Method 

The present method is closely related to that of Clare 
& Kepert (1986). The overall procedure may be 
divided into three phases: minimization, refinement 
and orientation. In the first phase the total energy to 
be minimized is 

V-=Y '. (1) 
i=! j=i+l \ri j]  

where r,j is the linear distance between points i and 
j, c is an arbitrary scaling constant and p is the 
exponent in the inverse-power interaction. Local 
minima of V are found by solving the nonlinear 
equations 

a WOOlk -~- 0 ,  k = 1 , . . . ,  2n, (2) 

subject to the condition that the Hessian matrix 
02V/aat Oa,, have no negative eigenvalues. Here a~ 
represents any of the angular coordinates of the points 
on a sphere of unit radius. In fact, spherical polar 
coordinates are used, q~ being the azimuthal angle 
(longitude) and 0 the polar angle (colatitude). 
Equations (2) are solved in successive stages for 15 
values of p, starting with p = 80 and doubling until 
p = 1 310 720. 

A brief description of the numerical procedure for 
the first phase follows. An iterative scheme is used 
to adjust the coordinates to minimize V for each value 
of p. For the starting value of p, the initial angular 
coordinates are selected randomly. For subsequent 
values of p the initial coordinates are the final coor- 
dinates of the preceding stage. Minimization begins 
with a simple gradient method, which proceeds until 
the gradient components are moderately small. A 
compound procedure using gradient and Newton- 
Raphson methods continues until solid convergence 
to a local minimum is obtained. At every iterative 
step the compound procedure calculates the state of 
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definiteness of the local Hessian matrix and is thus 
able to converge temporarily to a saddle point and 
then jump off in a downhill direction. Before advanc- 
ing to a larger value of p, the scaling constant c in 
(1) is adjusted to prevent numerical overflow. 

To increase the probability of finding a global 
minimum, the first-phase calculations are done for at 
least 50 cases of random starts. The typical result of 
the first phase is an approximate solution having a 
set of shortest edge lengths equal to five significant 
digits. Usually the differences among these approxi- 
mate solutions are large enough to eliminate all but 
the best one from further consideration. Occasionally 
two or more cases having different structures are 
almost equally optimal and must be kept for further 
processing. 

In the second phase an approximate solution is 
refined to be an 'exact' solution by adjusting the set 
of shortest edges to have exactly the same length (to 
12 significant digits). The relevant set of nonlinear 
equations is solved iteratively by Newton-Raphson 
methods. Sometimes the number of shortest edges is 
greater than the number of unknowns; this is generally 
so for symmetrical structures. Thus the numerical 
procedure is designed to handle dependent equations. 
At no time is symmetry assumed. Any symmetry 
observed in the resulting structure of vertices is a 
consequence of the calculation of all coordinates. 

The third phase consists of rotating the randomly 
oriented refined structure to a standard orientation 
that facilitates visual inspection and comparison of 
st~'uctures. Generally the orientation exhibits the most 
prominent symmetry, if any is present. 

3. Properties and characteristics of structures 

This section is a brief account of some properties and 
characteristics of the structures of vertices (poles of 
circles) that are conjectured solutions of the packing 
problem. Some of these are inherently interesting; 
others are useful in identifying and distinguishing the 
structures. It is convenient to consider separately 
properties of the entire structure, the rigid framework, 
the nonrigid substructures (if any) and single vertices. 

3.1. Entire structure 

The most important single property is the defining 
property of the problem, that is, the size of the circles 
(or shortest edge length). Here the linear diameter is 
designated by D; the corresponding angular diameter 
in degrees is d. An alternative measure of size is the 
packing density F, which is the fraction of the 
spherical surface covered by circles. Another basic 
property is the number N of shortest edges (or con- 
tacts). 

Another important property is whether a structure 
is rigid or not. A structure is rigid provided (1) no 

infinitesimal shifting of the vertices permits the size 
of every circle to increase and (2) the only 
infinitesimal shifts preserving the size of every circle 
are rotations. For some of our conjectured solutions, 
the second condition is not satisfied. Then at least 
one circle is free to 'rattle' in a 'hole', using the 
pictorial description of Mackay, Finney & Gotoh 
(1977). In the simplest cases each hole contains only 
one circle free to rattle. However, as the present results 
confirm, two or more circles may be free to rattle in 
the same hole. The number of holes is H and the 
total number of rattling circles is R. 

Another fundamental property of the entire struc- 
ture is its graph. In the mathematical literature (van 
der Waerden, 1952; Szrkely, 1974) each edge of the 
graph corresponds to a contact between circles. It is 
customary to consider the pole of a circle free to rattle 
as an isolated vertex. Thus there are no edges to 
indicate metrical relationships for such a vertex. It 
may be preferable to introduce a more general graph 
with weighted edges to indicate connections to the 
nearest neighbors of such a vertex. 

Another fundamental property of the entire struc- 
ture is its symmetry, specifically in this situation, its 
point group. Special interest attaches to whether or 
not the structure is enantiomorphous. Related proper- 
ties, which are particularly interesting in a few cases, 
are those of 'broken symmetry'  and 'partial sym- 
metry'. 'Broken symmetry'  applies when a subset con- 
taining a relatively large fraction of the vertices is 
more symmetric than the entire structure. 'Partial 
symmetry'  applies when a subset of medium size is 
more symmetric than the entire structure. 

Finally there is the superficial property of orienta- 
tion. Nevertheless it may still have practical import- 
ance in exhibiting symmetry or in determining by 
inspection of tabulated coordinates whether two 
structures are congruent. Further discussion of 
orientation is postponed to § 3.5. 

3.2. Rigid framework 

All of the conjectured solutions presented here 
consist of structures that (1) are entirely rigid or (2) 
contain a connected rigid substructure. It seems to 
be intuitively clear that this must also be true for the 
actual solutions. The rigid portion will be referred to 
as the 'rigid framework'. The relative positions of the 
vertices in a rigid framework are fixed, while the 
nonrigid vertices are free to rattle inside holes in the 
rigid framework. An inherently interesting property 
of such a rigid framework is its symmetry, which is 
not necessarily identical to the symmetry of the entire 
structure. 

In addition there are other properties of the rigid 
framework that are useful for purposes of iden- 
tification and comparison. There may be circum- 
stances in which two different structures have equal 
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(or almost equal) values for the diameter D. Then 
other simple invariant measures should be used to 
complete the characterization of a structure. Two such 
measures are the averages A and B for the rigid 
framework 

E' 
A -= r,~ (3) 

u u ~ u  

E' n ~  -1 r , , .  (4) 
Z u o > u  

z = - ( n - R ) ( n - R - 1 ) / 2 ,  (5) 

where the primed symbol ~ '  indicates summation 
over the rigid framework only. 

3.3. N o n r i g i d  substructures  

When a nonrigid substructure exists, supplemen- 
tary conditions must be specified to determine a 
unique structure. In cases for which each hole con- 
tains only one circle free to rattle, it is natural to place 
each free circle at the center of the largest encircling 
circle that fits in the hole and preserves as much as 
possible the symmetry of the rigid framework. This 
plan was adopted by Clare & Kepert (1986). 

In cases having a hole containing more than one 
free circle the choice is less simple. There appear to 
be two reasonable alternatives. The first is to locate 
the free vertices in one hole so that they have 
maximum equal separation from each other and from 
the vertices in the surrounding rigid framework while 
giving priority to the preservation of maximum sym- 
metry. Since this auxiliary problem can be solved 
using the methods described in § 2, this plan is adop- 
ted here. The second alternative would be to locate 
the free vertices in one hole to coincide with the poles 
of the largest equal circles that can be packed into 
the hole, again preserving maximum symmetry. This 
auxiliary circle-packing problem, requiring a different 
formulation, has not been pursued here. For either 
alternative the solution of the auxiliary problem may 
fail to provide a unique structure. Then a second level 
of auxiliary problem would appear. For some very 
large values of n one might expect to find extensive 
hierarchies of sets of circles located in this manner. 

3.4. Single  vertices 

An important inherent property of a single vertex 
is whether or not it belongs to the rigid framework. 
An important property of certain subsets of vertices 
is equivalence with respect to the symmetry 
operations of the point group. It is usually possible 
to characterize a structure briefly in terms of the 
number of such subsets each containing a specified 
number of vertices. For example, s~ (m~)=  3(4) indi- 
cates the existence of three subsets each containing 
four equivalent vertices. 

Less fundamental but very useful for identifying 
individual vertices in the rigid framework are the 
invariant averages Au and B,, : 

A , , -  1 ~"~ ' r,,o (6) 
n - R - 1  o,~,, 

1 v '  
Bu - z__, r uv , (7) 

n - R - 1  ~ , ,  

where again all indices refer to vertices in the rigid 
framework. A,, and Bu are particularly useful for 
identifying subsets of equivalent vertices and for 
establishing the symmetry of the rigid framework. 
This is so because equivalent vertices necessarily have 
identical values of A~ and B, respectively. The con- 
verse of course is not true. It is interesting to note 
that the small number of known 'accidental '  coin- 
cidences of this type occur in cases of broken sym- 
metry. 

Finally, a superficial but practically important 
characteristic of a single vertex is its specification in 
terms of angular coordinates. The most effective use 
of coordinates for identification and comparison of 
structures requires the prior development of rules for 
orienting structures in a standard manner. 

3.5. Orienta t ion  

Clearly the rules for producing a standard orienta- 
tion should give precedence to exhibiting explicitly 
the most prominent symmetry (or broken symmetry), 
if any. Then some arbitrary principle(s) must be used 
to remove any remaining ambiguity. One such prin- 
ciple requires the concentration of rigid vertices in 
specified regions of the coordinate system, for 
example, the neighborhoods of the north pole (0 = 0 °) 
and the reference meridian (q~ =0°). A preliminary 
set of rules based on these ideas has been developed 
to orient the structures computed here. Details of the 
rules are given in the Appendix. 

4. Results  

A summary of numerical results for n = 13-90 is pre- 
sented in Tables 1 and 2. For each value of n the 
following items are listed: the linear diameter D; the 
number of shortest edges N;  the average distance 
between vertices for the rigid framework A; the 
average of the reciprocal distance for the rigid 
framework B; the angular diameter d in degrees; the 
packing density F; the number R of vertices free to 
rattle; the number H of holes; under G the Schoen- 
flies symbol for the point group; under E an indica- 
tion (Yes/No) whether or not the structure is enan- 
tiomorphous; the order O of the point group; a list 
of s i (mi)  for the number si of subsets containing m~ 
equivalent vertices; and a literature reference. It 
should be pointed out that there are two entries for 
n = 15. Of all these structures 60 are new. 
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n D 

51 0 . 5 0 6 8 6 7 3 9  

52 0 . 5 0 4 0 5 0 1 8  

53 0 . 4 9 7 6 1 4 7 0  

54 0 . 4 9 5 9 7 5 1 9  

55 0 . 4 8 8 2 9 2 8 5  

56 0 . 4 8 6 3 5 0 5 4  

57 0 . 4 8 0 9 0 8 0 2  

58 0 . 4 7 6 3 0 1 5 6  

59 0 . 4 7 3 5 9 1 1 0  

60 0 . 4 7 0 1 6 2 5 9  

61 0 . 4 6 4 7 2 3 7 6  

62 0 . 4 6 1 5 1 6 3 7  

63 0 . 4 5 8 1 7 8 6 1  

64 0 . 4 5 3 8 9 8 3 0  

65 0 . 4 5 1 0 8 9 5 5  

66 0 . 4 4 9 0 0 8 2 9  

67 0 . 4 4 4 5 2 6 2 0  

68 0 . 4 4 0 7 2 4 4 5  

69 0 . 4 3 8 5 3 8 5 3  

70 0 . 4 3 5 7 9 1 1 5  

71 0 . 4 3 2 6 7 3 2 8  

72 0 . 4 3 1 6 2 6 4 9  

73 0 . 4 2 5 2 7 2 2 1  

74 0 . 4 2 3 0 0 5 8 1  

75 0 . 4 2 0 9 7 2 9 1  

76 0 . 4 1 7 8 6 6 5 0  

77 0 . 4 1 5 7 5 2 5 5  

78 0 . 4 1 4 6 4 5 7 8  

79 0 . 4 0 9 4 0 1 9 0  

80 0 . 4 0 8 0 2 7 1 7  

81 0 . 4 0 4 6 7 9 6 4  

82 0 . 4 0 2 0 2 9 5 5  

83 0 . 4 0 0 1 5 5 2 7  

84 0 . 3 9 9 6 2 0 5 7  

85 0 . 3 9 4 9 5 0 1 3  

86 0 . 3 9 3 1 6 5 0 3  

87  0 . 3 9 0 9 7 9 2 9  

88 0 . 3 8 9 6 3 0 8 2  

89 0 . 3 8 7 0 4 0 7 6  

90 0 . 3 8 4 2 5 6 4 7  

N 

98 

102 

100 

106 

104 

104 

114 

112 

115 

119 

118 

122 

129 

120 

124 

135 

128 

131 

124 

134 

138 

147 

140 

142 

146 

148 

146 

159 

156 

164 

156 

158 

156 

171 

166 

164 

174 

180 

169 

171 

Table 2. Summary of structures for n = 51-90 

1 . 3 5 7 7 1 4 7 8  

1 . 3 5 8 8 2 0 2 4  

1 . 3 5 7 0 4 1 6 4  

1 . 3 5 6 3 8 2 5 8  

1 . 3 5 5 9 6 2 1 9  

1 . 3 5 6 5 4 7 3 4  

1 . 3 5 5 1 0 5 4 9  

1 . 3 5 4 8 0 7 7 3  

1 . 3 5 4 5 2 8 1 7  

1 . 3 5 4 1 2 4 2 4  

1 . 3 5 3 7 2 7 6 9  

1 . 3 5 3 4 6 0 3 2  

1 . 3 5 3 7 6 8 3 8  

1 . 3 5 3 0 2 0 1 0  

1 . 3 5 2 8 3 7 2 9  

1 . 3 5 2 3 0 0 6 6  

1 . 3 5 1 9 1 2 0 4  

1 . 3 5 1 8 3 1 2 4  

1 . 3 5 2 7 5 1 1 4  

1 . 3 5 1 4 3 7 4 3  

1 . 3 5 0 9 9 2 3 6  

1 . 3 5 0 7 5 8 0 2  

1 . 3 5 0 3 7 6 4 9  

1 . 3 5 0 1 9 8 1 5  

1 . 3 5 0 0 7 7 5 4  

1 . 3 4 9 8 1 6 8 5  

1 . 3 4 9 7 9 6 1 7  

1 . 3 4 9 4 5 0 6 0  

1 . 3 4 9 1 8 3 7 3  

1 . 3 4 9 0 6 1 7 9  

1 . 3 4 9 0 0 5 1 7  

1 . 3 4 8 7 5 0 6 1  

1 . 3 4 8 3 1 5 5 0  

1 . 3 4 8 3 2 4 8 1  

1 . 3 4 8 1 1 6 0 0  

1 . 3 4 8 1 7 3 8 2  

1 . 3 4 7 8 0 6 2 1  

1 . 3 4 8 2 1 5 0 4  

1 . 3 4 7 5 6 8 3 9  

1 . 3 4 8 1 4 5 3 7  

0 . 8 6 2 9 9 1 0 8  

0 . 8 6 2 2 9 6 2 8  

0 . 8 6 5 7 8 2 1 2  

0 . 8 6 6 3 5 1 8 0  

0 . 8 6 7 8 3 0 2 4  

0 . 8 6 7 5 9 8 8 8  

0 . 8 6 9 8 2 7 3 0  

0 . 8 7 0 6 1 2 8 9  

0 . 8 7 1 5 7 6 6 1  

0 . 8 7 2 5 2 3 2 6  

0 . 8 7 3 6 1 4 2 9  

0 . 8 7 4 4 4 7 4 7  

0 . 8 7 4 7 7 2 0 4  

0 . 8 7 6 2 4 6 5 5  

0 . 8 7 7 2 6 4 4 1  

0 . 8 7 7 7 8 2 6 3  

0 . 8 7 8 5 6 1 9 9  

0 . 8 8 0 0 0 9 0 5  

0 . 8 7 8 9 5 7 1 3  

0 . 8 8 0 9 3 1 3 4  

0 . 8 8 1 7 3 8 9 1  

0 . 8 8 2 4 7 2 4 2  

0 . 8 8 3 8 1 8 6 6  

0 . 8 8 4 3 1 6 4 4  

0 . 8 8 4 7 8 8 4 1  

0 . 8 8 5 4 8 6 6 9  

0 . 8 8 5 8 8 5 4 6  

0 . 8 8 6 6 7 2 6 2  

0 . 8 8 7 5 4 9 5 0  

0 . 8 8 7 9 4 5 6 8  

0 . 8 8 8 8 5 7 1 7  

0 . 8 8 9 1 4 7 3 1  

0 . 8 9 0 5 7 3 3 0  

0 . 8 9 0 4 5 9 6 3  

0 . 8 9 1 2 5 5 3 6  

0 . 8 9 1 5 1 8 3 6  

0 . 8 9 2 2 6 8 9 2  

0 . 8 9 1 8 2 8 2 8  

0 . 8 9 4 1 4 3 9 4  

0 . 8 9 2 7 4 6 2 2  

d(°) [ 
2 9 . 3 6 1 5 8 8  

2 9 . 1 9 4 7 5 8  

2 8 . 8 1 3 8 9 7  

2 8 . 7 1 6 9 2 1  

2 8 . 2 6 2 7 9 1  

2 8 . 1 4 8 0 4 7  

2 7 . 8 2 6 6 7 6  

2 7 . 5 5 4 8 4 7  

2 7 . 3 9 4 9 7 6  

2 7 . 1 9 2 8 3 0  

2 6 . 8 7 2 3 3 1  

2 6 . 6 8 3 4 2 7  

2 6 . 4 8 6 9 2 3  

2 6 . 2 3 5 0 4 3  

2 6 . 0 6 9 8 3 0  

2 5 . 9 4 7 4 4 4  

2 5 . 6 8 3 9 8 1  

2 5 . 4 6 0 6 1 8  

2 5 . 3 3 2 2 3 4  

2 5 . 1 7 0 9 2 0  

2 4 . 9 8 7 9 1 4  

2 4 . 9 2 6 4 8 6  

2 4 . 5 5 3 7 5 9  

2 4 . 4 2 0 8 8 2  

2 4 . 3 0 1 7 2 3  

2 4 . 1 1 9 6 9 1  

2 3 . 9 9 5 8 5 1  

2 3 . 9 3 1 0 2 5  

2 3 . 6 2 3 9 8 7  

2 3 . 5 4 3 5 2 3  

2 3 . 3 4 7 6 3 8  

2 3 . 1 9 2 6 1 3  

2 3 . 0 8 2 9 9 8  

2 3 . 0 5 1 7 3 1  

2 2 . 7 7 8 6 9 3  

2 2 . 6 7 4 3 6 9  

2 2 . 5 4 6 6 5 7  

2 2 . 4 6 7 8 8 1  

2 2 . 3 1 6 6 0 2  

2 2 . 1 5 4 0 2 3  

l l , l , l l  C o 
0 . 8 3 2 5 0 5  i 1 1 C 1 Y 1 

0 . 8 3 9 2 6 2  i 4 4 T Y 12 
I 

0 . 8 3 3 3 4 6  2 2 C 1 Y 1 

0 . 8 4 3 3 9 3  0 0 C 1 Y 1 

0 . 8 3 2 1 9 5  2 2 C 1 Y 1 
i i  11 

0 . 8 4 0 4 9 4  4 4 D 2 Y 4 

0 . 8 3 6 1 7 5  0 0 C 3 Y 3 

0 . 8 3 4 3 8 2  1 1 C 1 Y 1 

0 . 8 3 8 9 9 5  1 1 C I Y 1 

0 . 8 4 0 7 2 9  0 0 C 2 Y 2 
i i  i i  

0 . 8 3 4 8 0 3  1 1 C 1 Y 1 

0 . 8 3 6 6 5 5  0 0 ! C 1 Y 1 

0 . 8 3 7 7 3 0  3 3 i D 3 Y 6 

0 . 8 3 4 9 8 9  3 3i C 1 Y 1 

0 . 8 3 7 4 3 4  2 2 ! C 2 Y 2 
i i  I I  

0 . 8 4 2 3 8 7  0 0 i D 3 Y 6 

0 . 8 3 7 9 4 5  2 2 C 2 Y 2 

0 . 8 3 5 7 8 4  2 2 : C 2 Y 2 

0 . 8 3 9 5 7 9  6 6 : C 1 Y 1 

0 . 8 4 0 9 7 7  2 2 C 1 Y 1 
| 1  H 

0 . 8 4 0 6 8 2  1 1 C 1 Y 1 

0 . 8 4 8 3 5 2  0 0 D 3 Y 6 

0 . 8 3 4 7 0 2  2 2 C 1 Y 1 

0 . 8 3 7 0 3 7  2 2 C 1 Y 1 

0 . 8 4 0 1 2 1  1 1 C 1 Y 1 

0 . 8 3 8 6 6 4  1 1 C 1 Y 1 

0 . 8 4 1 0 2 8  3 3 C 1 Y 1 

0 . 8 4 7 3 7 0  0 0 D 3 Y 6 

0 . 8 3 6 4 3 0  0 0 C 1 Y 1 

0 . 8 4 1 2 7 8  0 0 D 2 Y 4 

0 . 8 3 7 7 2 7  2 2 C 1 Y 1 

0 . 8 3 6 8 8 3  2 2 i C 1 Y 1 

0 . 8 3 9 1 2 8  4 3 1  C 1 Y 1 

0 8 4 6 9 4 7  0 0 D 3 Y 6 

0 . 8 3 6 9 1 4  1 1 C 1 Y 1 

0 . 8 3 9 0 4 7  3 3 C 1 Y 1 

0 . 8 3 9 2 9 9  0 0 D 3 Y 6 

0 . 8 4 3 0 4 3  4 4 T Y 12 

0 . 8 4 1 2 1 7  4 3 C 1 Y 1 

0 . 8 3 8 3 5 8  6 6 D 3 Y 6 

I s '(m')  ' ' II 
51(1) 
1(4),4(12) 
5 3 ( 1 )  

54(1) 
55(1) 
14(4) 
19(3)  

58(I) 

59(I) 
30(2) 

61(i) 

62(1) 

i(3),1o(6) 
64(1) 
1(1),32(2) 

11(6) 
1 ( 1 ) , 3 3 ( 2 )  

3 4 ( 2 )  

69(1) 
70(1) 

71(1) 
12(6) 
73 (1 )  

74(i) 

75(i) 

7 6 ( 1 )  

77 (1 )  

13(6) 
7 9 ( 1 )  

20(4) 
81(1) 
82(1) 
8 3 ( 1 )  

14(6) 

85(1) 

86(i) 
i(3),14(6) 
1 ( 4 ) , 7 ( 1 2 )  

89(1) 
15(6) 

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  w o r k  

P r e s e n t  w o r k  

P r e s e n t  w o r k  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  w o r k  

Present w o r k  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  w o r k  

P r e s e n t  w o r k  

P r e s e n t  w o r k  

P r e s e n t  w o r k  

P r e s e n t  work  

P r e s e n t  w o r k  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  w o r k  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  w o r k  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  work  

P r e s e n t  work  

Present w o r k  

P r e s e n t  w o r k  

The jagged curve in Fig. 1 shows the conjectured 
dependence of  the packing density F on n. The 
smooth curve plotted there is a composite o f  the two 
upper bounds proved in §§ 9.1 and 9.5 of  the paper 
by Robinson (1961). Note  that the asymptotic limit 
o f  the upper bound is ~r / (2v~)-~0 .906900,  which is 
identical to the density for hexagonal packing of  
circles in a plane. Note also that the data in Fig. 1 
include the proven icosahedral structure for n = 12 
(Fejes T6th, 1943). 

Detailed numerical results for each structure are 
listed in Table 3 in Appendix  A of  the deposited 

material.* The items tabulated for each vertex i are: 
the polar coordinates ~, and 0i in degrees; the average 
distance to other rigid vertices Ai; the average of  the 
reciprocal distance Bi; and under Q~ a letter of  the 
Roman alphabet A , . . . ,  Z to mark subsets o f  vertices 
having identical values o f  A~ and B~ respectively. Note 

* Full details of the structures and packing diagrams have been 
deposited with the British Library Document Supply Centre as 
Supplementary Publication No. SUP 53778 (121 pp.). Copies may 
be obtained through The Technical Editor, International Union 
of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England. 
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that Ai and Bi are defined only for vertices in the 
rigid f ramework;  the nonsensical  value of  0-0 is listed 
for a vertex that rattles. Thus a vertex that  rattles is 
not included in any of  the subsets; it is marked  by 
'?L Note also that,  if a structure has more than 26 
such subsets, the excessive ones are all marked  by Z 
and thus confused.  

O.gb T ~ . . .  ~ . . . . . .  , . . . .  , . . . .  ~ .  . . !  

ASymOtOtlC DOUnO 1 
o . g o  i . \  
0.85 

0 BO i 

) 
i 

S 7 5  . . . . . . . . . . . . . .  , , , , I . . . .  , . . . . . . . . . . .  
: 0 2 ,0  3 0  4 0  ~ [ )  b,'2, 7 0  B,O 9',3 

Fig. 1. Plot of the packing density F versus  the number of circles 
n. The jagged curve shows the results for the conjectured best 
packings. The smooth curve shows a rigorous upper bound 
(Robinson, 1961). 

g[. 

0 
_[ ...... 

4 b  9 [ ] .  ". ]5 ~..'~ 

C O L £ T  T T . , D  5 t 2 F G I a E F  S '  

Fig. 2. Polar plot of the two equally good conjectured densest 
packings for 15 circles. The structures differ only in the positions 
of their seventh circles. 

A polar  plot of  the two structures for n -- 15 is given 
in Fig. 2. Similar plots for all of  the other  new struc- 
tures in Tables 1 and 2 are given in Appendix  B of  
the deposi ted material .* In these plots each vertex is 
represented by a numerical  index drawn in a small 
circle. By convention any vertex located exactly at 
the south pole is plotted at q~ = 0 °, in addi t ion such 
a vertex is represented by a large circle d rawn close 
to the entire boundary  circle that corresponds  to the 
south pole. Edges connecting vertices are represented 
by curves that  depict  arcs of  great circles on the 
spherical surface. The vertices in the rigid f ramework  
and the shortest  edges connect ing them are d rawn as 
solid curves. Any vertices free to rattle and the edges 
connecting them to their nearest  neighbors are d rawn 
as dotted curves. 

5. D i s c u s s i o n  o f  se lected cases  

Several of  the structures summar ized  in Tables 1 and 
2 possess one or more interesting features. A brief  
discussion of  these follows. 

n = 15. This case is unusual ,  since there are two 
distinct structures that are equally good as conjec- 
tured solutions of  the packing problem. They are both 
shown in Fig. 2. The only thing different between 
them is the position of  the seventh vertex, which is 
shown by 7A and 7B for the A and B structures 
respectively. Structure A, conjectured by Schiitte & 
van der Waerden  (1951), has a threefold axis, while 
the new structure B has no symmetry.  The relation- 
ship between the two structures can be unders tood  
by noting that the subset of  12 vertices farthest  f rom 
the equator  has the symmetry  group D3 (a vertical 
threefold axis and three horizontal  twofold axes). 
One may imagine that the 15-vertex structures are 
created by distributing three new vertices among  six 
empty sites in the 12-vertex structure. Since these six 
sites occur as three over lapping pairs, there are only 
two distinct ways to distribute the new trio. One way 
has all three new vertices on the same side of  the 
equator,  while the other  has a pair  and a single one 
on opposite  sides. In the process the O 3 symmetry  of  
the 12-vertex structure is broken.  Thus each 15-vertex 
structure may be said to have a broken D3 symmetry.  
Perhaps coincidentally 15 is the smallest value of  n 
for which the best structure known is handed.  

n = 19. This case, conjectured by Lazi6, Senk & 
Segkar (1987), is the smallest  value of  n giving a fully 
developed hole containing a circle free to rattle. (The 
most unusual  case of  n --5,  not included here, has a 
'slot '  in which two circles are free to slide.) The 
'center '  of  the hole lies in a reflection plane and 
coincides with the pole of  the free circle. Thus the 
e,atire structure has the same symmetry as the rigid 

* See footnote on page 162. 
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framework. In addition this structure has 'partial' 
symmetry, since a subset of eight vertices has a two- 
fold axis. 

n =20. This structure, conjectured by van der 
Waerden (1952), has two holes each containing one 
free circle. The entire structure has the same symmetry 
as the rigid framework. 

n = 23. This structure, conjectured by Tarnai & 
G~sp~ir (1990), is not obtained by removing one vertex 
from a snub cube, which is the proven solution for 
n = 24 (Robinson, 1961). This result bears on a related 
conjecture offered by Robinson (1969). 

n = 33. While the symmetry group for the entire 
structure is C3, there is a subset of 18 vertices possess- 
ing D3 symmetry. The orientation for this structure 
is nonstandard, since it has been chosen to exhibit 
the partial symmetry. 

n = 38. This highly symmetrical structure (group 
D6a), conjectured by Szrkely (1974), is the largest 
structure in Tables 1 and 2 that is not handed. 

n = 41. This new structure is a remarkable example 
of broken symmetry. The entire structure has no sym- 
metry, but a subset of 40 vertices has a twofold axis. 
A nonstandard orientation has been chosen to exhibit 
the broken symmetry group C2. 

n =47. This new structure is not obtained by 
removing one vertex from the highly symmetrical 
conjectured solution for n =48. This situation is 
similar to that for n = 23 and bears on the conjecture 
of Robinson (1969). 

n =48. This structure, conjectured by Robinson 
(1969), has a remarkably high order of symmetry. It 
contains two subsets of 24 equivalent vertices. 

n=50 .  This structure, conjectured by Sz~kely 
(1974), has methodological interest. Of all the struc- 
tures listed in Tables 1 and 2 it is the only one that 
could not be found using the search method described 
in § 2. Even when the coordinates were initialized in 
a special test to the 'exact' values for this structure, 
the minimization process converged to an inferior 
solution. Evidently the bias introduced by starting 
with the exponent p = 80 leads the double iteration 
process away from the superior solution. 

n = 52. This new structure is quite symmetrical, 
having four holes located at the corners of a regular 
tetrahedron. Both the entire structure and rigid 
framework have the same rotational tetrahedral sym- 
metry. 

n = 54. This new structure has a remarkably high 
order of broken symmetry. The entire structure has 
no symmetry, but there is a subset of 52 vertices 
having symmetry group $4 (order 4). A nonstandard 
orientation has been chosen to exhibit the broken 
symmetry. 

n = 61. This new structure is only slightly better 
than the next best one, the difference in diameter of 
the circles occurring in the ninth decimal place. This 
situation shows the desirability of high numerical 

precision and the utility of the averages A and B in 
distinguishing structures. The only difference in the 
graphs of these structures is that the inferior one 
replaces edge (17, 20) by edge (26, 41). 

n = 63. This new structure, which has a threefold 
vertical axis and three twofold horizontal axes, also 
has three elongated holes each containing one free 
circle. The situation here requires application of the 
considerations in § 3.3. Each hole is 'centered' at one 
of the horizontal axes. To preserve all of the D 3 

symmetry of the rigid framework each free vertex 
should be placed on a twofold axis, provided there 
is enough space to fit a circle without overlap. This 
is indeed possible. Note that each free vertex has only 
two nearest neighbors instead of the usual three. If 
this had not been possible, the next best alternative 
would have been to place the three free vertices at 
equivalent positions on the same side of the equator 
to preserve the threefold axis. 

n =.69. This new structure is not symmetrical and 
has a total of six holes each containing one free circle. 

n = 83. This new structure, which has four free 
circles in three holes, is the first to have two free 
circles in the same hole. 

n = 88. This new structure is highly symmetrical, 
having four holes each with a free vertex located at 
the corners of a regular tetrahedron. 

n = 89. This new structure is remarkable in two 
ways. While the entire structure is not symmetrical, 
it has a high degree of broken symmetry, containing 
a subset of 84 vertices with a twofold axis. It also has 
three holes, one of which contains two free circles. 
Its orientation has been chosen to exhibit the broken 
symmetry. 

It is a pleasure to acknowledge the generous help 
given by Alyssa M. Dodd and her staff at the Com- 
puter Center of Washington State University at Tri- 
Cities. 

APPENDIX 
Rules for standard orientation 

In general any symmetry elements (axes and/or  
planes) are oriented first. Then rigid vertices are often- 
ted to concentrate them at or near the north pole 
(NP) at O = 0 ° and on or near the reference meridian 
(RM) at ¢ = 0 °. In the following rules 'vertex' means 
a vertex in the rigid framework. The logical flow of 
the rules is similar to that for nested IF -THEN-ELSE 
blocks in structured programming. At each level of 
indentation only one block of instructions is executed. 

I. If there is an m-fold (m ---3) or a single twofold 
axis, make that axis vertical turning it to place the 
midpoint of the tightest rotationally equivalent 
cluster of vertices (or perhaps a single vertex) at 
NP, breaking any tie by choosing the cluster (or 
single vertex) having the smaller Ai. 
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A. If there are additional fourfold horizontal 
axes, place one of them in the plane of RM. 
B. If there are additional twofold horizontal 
axes, place one of them in the plane of RM to 
locate the midpoint of the tightest rotationally 
equivalent pair of vertices (or perhaps a single 
vertex) at the intersection of RM and the equator, 
breaking any tie by choosing the pair (or single) 
having the smaller Ai. 
C. If there are only additional vertical reflection 
planes, turn these so that the midpoint of the 
tightest reflectionally equivalent pair of vertices 
(or perhaps a single vertex) in the northernmost 
rotational cluster lies on RM, breaking any tie 
by choosing the pair (or single) having the smal- 
ler Ai. 
D. If there are no additional horizontal axes or 
vertical reflection planes, place at RM the vertex 
in the northernmost cluster having the smallest 
Ai.  

II. If there are only three mutually perpendicular 
twofold axes (with or without reflection planes), 
identify the two axial poles having the tightest 
clustering of vertices. Give priority first to an axial 
vertex, then to the tightest pair of equivalent ver- 
tices and finally to the smallest value of A~. Place 
the pole with tightest clustering at NP and the 
second one on RM. 
III. If there is only a single reflection plane, make 
it coincide with the plane of RM. Identify the two 
points on the great circle in the symmetry plane 
that have the tightest clustering of vertices. Give 
priority first to a planar vertex, then to the midpoint 
of the tightest pair of equivalent vertices and finally 
to the smallest value of A~. Place the point with 
tightest clustering at NP and the second one on 
RM. If the second point is at the south pole, sub- 
stitute the best third point. 
IV. If there is no symmetry, or only a center of 
inversion, place at NP the vertex having the smal- 
lest A~. Place on RM the vertex in the northernmost 
ring having the smallest Ai. 

Note that the preceding rules fail to produce iden- 
tical coordinates for the vertices of some equivalent 
structures. Of course this is to be expected for the 
two oppositely handed forms of an enantiomorphous 
structure, but it may be true also for any structure 
lacking a vertical reflection plane that contains RM. 
In such cases the values of 0~ are identical, but those 
of q~ have reversed signs. 
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